
Support for Cross-domain Composition of Embedded
Systems Using MARTE Models

Maria Vasilevskaya
Dept. of Computer and Information Science

Linköping University, Sweden
maria.vasilevskaya@liu.se

Simin Nadjm-Tehrani
Dept. of Computer and Information Science

Linköping University, Sweden
simin.nadjm-tehrani@liu.se

ABSTRACT
Embedded systems have evolved from tailormade systems
developed by specialists to artefacts built from complex soft-
ware/hardware components with many extra-functional con-
cerns. Ubiquity of embedded devices demands other facets
such as security and safety to be brought to the forefront. At
the same time, cost efficiency dictates building systems from
reusable building blocks. However, integration of extra-
functional building blocks comes with a certain resource
overhead that must be taken into consideration while de-
signing resource-constrained embedded systems. This pa-
per builds on the premise that functional models can be
extended with platform modelling to help the application
engineers to select the right extra-functional building blocks
while accounting for performance implications of their in-
tegration. We define a UML profile relating it to relevant
parts of the MARTE profile in order to capture the per-
formance analysis results for a reusable building block, and
a generic notion of model-based compatibility analysis for
platform models. Additionally, our approach rests on cre-
ation of ontologies to store MARTE descriptions of hardware
components, and is supported by a MagicDraw plugin devel-
oped for capturing the analysis results and performing the
compatibility analysis.

1. INTRODUCTION
Embedded computing has a ubiquitous presence in almost
every facet of our life. As a result, the focus of embedded sys-
tem engineers is increasingly moving from realising only ap-
plication functions to providing Extra-Functional Properties
(EFPs) for them. Safety and security are among these EFPs
that highly impact the design of embedded systems, some-
times originated from certification or legal requirements. Of-
ten EFPs have a cross-cutting nature that impact systems in
many dimensions. Functions that enforce these properties
can, in turn, be encapsulated into reusable units built of
software and hardware components and used across many
applications. In our work, a reusable unit that provides
functions to satisfy EFPs is called Reusable Building Block

CRTS ’13 Vancouver, Canada
Copyright is held by the authors.

(RBB). For example, such RBBs can encapsulate security
functions, e.g. encryption and digital signature, that provide
such EFPs as confidentiality and integrity of data respec-
tively. Moreover, RBB encapsulation of functions needed to
satisfy EFPs allows domain specialists to study RBBs be-
fore their integration into different embedded devices that
are complex hardware-software systems. Note that not all
EFPs can be implemented in the form of RBBs, but such
EFPs are outside of the scope of this work.

Since adding a new feature to a system always comes with
resource claims, embedded systems, characterised by their
scarce resources, need a special process for integrating RBBs
which encompasses expertise from several domains. These
range over application domains, e.g. set-top boxes, smart
grid infrastructures, health monitoring systems, as well as
other expertise domains, e.g. security, safety, and real-time
computing. While domain-specific modelling has been pro-
posed for characterising the functional requirements [11],
formalisms for extra-functional areas are also emerging. Se-
cureUML [12], UMLSec [9], and AVATAR [16] have been
proposed to incorporate safety and security concerns into
systems at the design phase. Modeling and Analysis of
Real-Time and Embedded systems (MARTE) [15] is a stan-
dard UML profile put forward for capturing timing and per-
formance related aspects. This paper suggests that earlier
knowledge about results of previously conducted (by extra-
functional domain experts) performance analysis of RBBs,
providing data about resource footprint and quality of EFPs,
increases the efficiency of embedded system design process.
Our work contributes to selection of a suitable set of RBBs,
by enabling the sensitivity and trade-off analysis at early
phases.

Another useful and significant input to the design process
is knowledge about platform-specific constraints of RBBs.
These constraints originate from the fact that RBBs in em-
bedded systems are often optimised to exploit a particu-
lar feature of hardware components on which they are im-
plemented. Thus, they provide an acceptable quality with
respect to EFPs while consuming a small amount of lim-
ited resources. We argue that these constraints need to be
documented and accounted for in order to support integra-
tion of RBBs into embedded systems. For example, Preis-
sig [18] reports the results of performance analysis of a Data
Encryption Standard (DES) implementation optimised for
the memory architecture of the used chip. Similarly, other
implementations of DES rely on the presence of a certain

instruction set to accelerate permutation operations [20].
However, techniques for a systematic categorisation of such
platform-related knowledge are currently missing. Thus,
to leverage the results of the RBBs’ performance analysis
along with constraints on platform components, both extra-
functional domain experts and embedded system engineers
need a consistent framework to capture (and store) these
outcomes and to reuse them for later design decisions re-
spectively.

We exploit the MARTE [15] profile and ontology technolo-
gies to support (a) extra-functional domain experts in cap-
turing the results of performance analysis for RBBs and
(b) embedded system engineers in selecting the right set
of RBBs based on automated analysis of the resource con-
straints. For this purpose, we use model transformation
techniques to bridge the MARTE profile and specific on-
tologies. These contributions are detailed in this paper as
follows:

• Definition of a UML profile to capture performance
analysis results for RBBs and creation of an ontology
to support storage and querying of this data.

• Definition of the notion of model-based compatibil-
ity analysis to match platform-specific constraints of
RBBs and the platform resources adopted by an em-
bedded system engineer for development.

• Development of a MagicDraw plugin to support the
capturing and compatibility analysis steps above and
a scalability study for the ontological tool support.

The approach is validated using a case study that is also
used as a running example and presented in Sect. 2. Sect. 3
gives the background. Thereafter, Sect. 4 explains the pro-
posed UML profile to record results of the RBB performance
analysis. We present our method for the model-based com-
patibility analysis in Sect. 5. Sect. 6 shows results of scal-
ability and performance estimations for our approach. The
paper ends with a summary of related works followed by
conclusions.

2. SMART METERING APPLICATION
Fig. 1 depicts a smart grid metering infrastructure developed
by the company MixedMode within the European SecFutur
project [1]. It is built of a set of metering devices, database
servers, client applications, and communication infrastruc-
ture. The main goal of this system is to measure energy
consumption at households and associate it with client data
for billing purposes.

The actual measurement is done by Trusted Sensor Modules
(TSMs) consisting of a computing platform and physical sen-
sors. The acquired data is transferred via a local bus from
each TSM to a Trusted Sensor Module Collector (TSMC)
and then eventually sent to an operator server via a general-
purpose network. TSMC and TSM are functional modules
that are implemented on the same physical platform. In our
previous works [25], we presented a technique to systemat-
ically extract assets that need protection using functional
models. Also, we illustrated a security engineering process

Figure 1: Smart metering application [1]

that bridges the gap between the security experts and the
engineers specialised in embedded systems with this net-
worked scenario [26]. This paper takes the process further
by selection of suitable RBBs for encryption and decryption
functions, as examples of means to satisfy extra-functional
properties. We will use the case study in the forthcoming
sections to illustrate new concepts when they are introduced
in the paper.

3. BACKGROUND
In Sect. 3.1, we make a brief introduction to ontology tech-
nologies used in our work. Next, the MARTE profile used
for platform modelling is described in Sect. 3.2.

3.1 Ontology technologies
An ontology represents knowledge in a particular domain as
a set of concepts and their relations [3]. This knowledge is
formalised as a logic-based system and described by a knowl-
edge representation language. In particular, we use the Web
Ontology Language (OWL2) [13] which is a commonly used
language for creation of large ontologies.

OWL represents an ontology as a set of axioms. These ax-
ioms describe classes, their relations, and individuals. An
OWL class declares the concept of a domain and can be re-
fined by sub-classes. OWL individuals are instances of the
OWL classes. OWL supports two types of relations. An
OWL object property defines a relation between two indi-
viduals, where one of them plays the role of a domain, and
another one the role of a value range. An OWL datatype
property serves to introduce relations between an individual
(domain) and the XML schema datatypes (range) known
as XSD 1. The OWL language supports the importing fea-
ture. It allows relating different OWL ontologies using the
owl:import statement. To design and manage an ontology,
one can use tools such as Protégé 2. In our work, we ex-
ploit the Java OWL APIs 3 since the rest of our tool chain
is Java-based.

Ontologies allow querying of the declared knowledge by means
of ontology reasoners with the help of the SPARQL query-

1http://www.w3.org/TR/xmlschema-2/
2http://protege.stanford.edu
3www.owlapi.sourceforge.net

ing language 4. SPARQL 1.1 is a standard query language
to execute data queries on top of OWL. It supports yes/no-
questions (the ASK query), a selection which matches a de-
sired pattern (the SELECT query), filtering (the FILTER
modifier), sorting (the ORDER modifier), etc. To execute
the SPARQL queries, one can load an ontology into the Pro-
tégé tool and use its SPARQL plugin 5. We use Java APIs
provided by a widely accepted Jena 6 framework.

3.2 MARTE
MARTE [15] is a UML profile that contains a rich set of
concepts to support design and analysis of embedded sys-
tems. Several experience reports on applying this profile
to industrial cases exist, among which the work of Iqbal et
al. [8].

The MARTE foundations define a set of concepts required
to model non-functional properties (NFPs). Namely, the
Generic Resource Modeling (GRM) package contains gen-
eral concepts required for modelling of an execution plat-
form consisting of various resources such as computing and
storage resources. These foundations serve as a basis for the
MARTE design and analysis packages. The MARTE de-
sign package contains sub-packages to describe the hardware
and software resource models: Hardware Resource Model-
ing (HRM) and Software Resource Modeling (SRM). The
MARTE analysis package provides facilities to model the
context required to perform model-based analysis of real-
time and performance characteristics of embedded systems.
In particular, the Generic Quantitative Analysis Modeling
(GQAM) package defines a set of general components while
its extensions refine it to support schedulability and perfor-
mance analysis. While these extensions facilitate the ap-
plication of analysis techniques to embedded systems, there
are no extensions for storing alternative analysis results for
their later reuse, whereas our profile is designed to provide
these facilities.

4. CAPTURING PERFORMANCE EVALU-
ATION RESULTS

We define a profile for capturing performance evaluation re-
sults called Generic Evaluation Model (GEM). This profile
is depicted in Fig. 2 and explained in this section.

The feedback loop is a significant step of any analysis as indi-
cated with the step“give feedback to designers”by Petriu [17].
The GEM profile supports this step enriching it with three
additional principles: encapsulation of EFP functions into
RBBs; separation of a system designer and (extra-functional)
domain expert roles; and reuse of the evaluation results.
Thus, GEM provides a means for a domain expert to capture
the results of RBB performance evaluation in order to sup-
port embedded system engineers in selecting a suitable RBB,
and to enable automated analysis of the captured data.

gemEvaluation is a central concept of the GEM profile. It
relates four sub-concepts that indicate constituents of any
evaluation procedure.

4www.w3.org/TR/rdf-sparql-query/
5http://protegewiki.stanford.edu/wiki/SPARQL_Query
6https://jena.apache.org

Figure 2: A general UML profile to capture perfor-
mance evaluation results

First, gemToE (Target of Evaluation) refers to an RBB
(gemToE RBB) or its functions (gemToE Function) that
are under performance evaluation. A gemToE can be char-
acterised by a set of parameters introduced by the toeParam
tag (i.e. a property of the stereotype), e.g. a key size
and cipher mode for an encryption RBB. Any ToE exe-
cutes on some evaluation platforms reflected by the gemPlat-
form stereotype. We use a UML class model annotated with
stereotypes from the HRM MARTE package to describe this
platform. An execution platform can describe resources that
take a variety of forms, e.g. hardware, software, or logical
resources. In this presentation, we consider only hardware
components. However, the general concept is scalable to
include other forms of resources for analysis. The gemRe-
quiredComponent stereotype is used to introduce those com-
ponents of an evaluation platform that are significant for a
considered ToE to obtain the captured performance results.
For example, it can be a particular instruction set exploited
by a ToE implementation.

Second, gemApproach denotes the description of the used
evaluation approach. The kind tag defines the type of the
evaluation method, e.g. simulation, emulation, or analytical
analysis. These types are represented as a UML enumera-
tion, i.e. ApproachKind. An approach can be parameterised
using the approachParam tag.

Third, gemWorkloadEvent introduces the workload used dur-
ing the performance evaluation. Similarly, a workload can
be parameterised using the workloadParam tag.

Finally, gemMetrics defines a set of metrics adopted for the
performance evaluation. These metrics can be of two cat-
egories. The first category (resourceMetrics) describes the
resource footprint created by ToE, e.g. execution time. The
second category (domainMetrics) refers to the obtained in-
dicators that characterise the quality of EFPs, e.g. the se-
curity level provided by a ToE. The presence of these two
categories reflects the fact that for selection of suitable RBBs
both resource footprint and quality of service indices play a
significant role.

Note that multiplicity of the toe, approach, and workloadE-
vents association ends are equal to one. Each time a new ap-
proach (likewise workload or ToE) is used a new evaluation
should be defined. During one evaluation of a ToE several
evaluation platforms can be used. Thus, several metrics sets
can be obtained as indicated by the multiplicity of the met-
rics association end. In turn each set of metrics is uniquely
associated with one evaluation platform (see measuredOn).

gemToE, gemApproach, gemWorkloadEvent can be used to
annotate either a complex or a very simple model of a cor-
responding constituent. The level of detail does not play a
significant role for the GEM profile. Nevertheless, the richer
these models are the more informed decisions can be made
by an embedded system engineer when selecting RBBs. All
parameters and metrics types (ToEParameter, Appproach-
Parameter, WorkloadParameter, DomainMetrics, and Re-
sourceMetrics) are defined as UML data types the attributes
of which can be of the MARTE NFP types or other basic
types (not shown in Fig. 2).

The MARTE GQAM sub-profile (mentioned in Sect. 3) sig-
nificantly helps the domain experts to design their evalua-
tions. In order to demonstrate how our profile can be used to
capture performance evaluation results modelled in GQAM,
we identify the correspondence between the stereotypes and
tags of GEM and GQAM shown in Table 1.

Note that our profile is not restricted to capture results ob-
tained only when GQAM or its refinements are used. For ex-
ample, results presented by Preissig [18], that are obtained
through a traditional approach, can also be described by
GEM (not shown in this paper). However, GQAM can fa-
cilitate this task, since the mapping identified in Table 1 can
be automated as a transformation directly feeding relevant
data into GEM.

Since GEM is defined as a general UML profile, a domain
expert can refine some of its concepts to tailor it to a cer-
tain domain. In particular, an expert needs to defined data
types for ToEParameter, DomainMetrics, and ResourceMet-
rics. Fig. 3 shows such a refinement for the security do-
main as an example where a cipher RBB is considered.
ToEParam Cipher says that a cipher mechanism can be
characterised by its key size and cipher mode. Quality of
service metrics for a cipher (see DM Cipher) are resistance
to attacker’s capabilities in terms of skill, motivation, and
duration of the attack. Finally, a pair of resource metrics
defined for this RBB are used memory and data rate (see
RM Cipher).

Figure 3: Refinement of the general evaluation pro-
file for the security domain

4.1 Storing and querying captured results
To assist an embedded system engineer in reusing perfor-
mance evaluation data captured by a domain expert, we
exploit ontology technologies (see Sect. 3.1). In particu-

Table 1: Correspondence between our GEM and
(MARTE) GQAM

GEM GQAM
gemToE The GaScenario stereotype
toeParam No direct mapping. It can be mapped

to some variables declared in the con-
textParam tag (the GaAnalysisContext
stereotype) where sourceKind is defined
as required (req).

gemPlatform The GaResourcePlatform stereotype
gemRequired-
Component

Any element from a GaResourcePlatform
model can be annotated with this stereo-
type.

gemApproach Not represented.
kind Not represented. It is defined by an anal-

ysis formalism that underlies the GQAM
model.

approachParam Not represented.
gemWorkloadEventThe GaWorkloadEvent stereotype
workloadParam No direct mapping. It can be mapped

to some variables declared in the con-
textParam tag where sourceKind is de-
fined as required (req).

gemMetrics No direct mapping. It can be mapped to
any declared variables where sourceKind
is set to calculated (calc), estimated (est),
or measured (msr).

resourceMetrics No direct mapping. It can be mapped
to some variables declared as tags of the
GaStep stereotype.

domainMetrics No direct mapping. These variables are
usually defined by domain experts and in-
troduced as a part of the contextParam
tag.

lar, the profile in Fig. 2 is transformed into an ontology
called the core evaluation ontology (the owl-file is available
at our web-page 7). Each refinement of this profile for an
extra-functional domain (e.g. the one depicted in Fig. 3) is
transformed into a separate ontology called [domain name]
evaluation ontology that imports the core evaluation ontol-
ogy enriching it with additional concepts from this domain,
i.e. concrete ToE parameters, domain, and resource metrics.
Since description of actual performance evaluation results is
essentially an instance of the profile, we transform it into
axioms on individuals and call it [domain name] evaluation
record. For example, a class annotated with the ToE stereo-
type becomes an individual of the ToE class in the core
ontology.

A variety of queries can be defined to retrieve different in-
formation from these ontologies, for example:

• Retrieve values of relevant performance metrics for a
certain RBB.

• Retrieve a set of RBBs of a particular domain that sat-
isfy required values w.r.t. certain performance metrics.

7www.ida.liu.se/~marva/ontologies/

• Retrieve a set of RBBs, for which the platform con-
straints are compatible with a platform adopted for
an embedded system under development.

Queries like the first two are implemented directly as a set
of SPARQL queries [19]. However, the task of compatibil-
ity analysis requires more sophisticated support. Hence, in
the rest of this paper, we present the developed method for
cross-domain model-based compatibility analysis, where one
domain is an extra-functional domain and the other one is
an application domain. To demonstrate introduced concepts
and methods, we use the security domain as an example of
EFPs.

5. MODEL-BASED COMPATIBILITY
Model-based compatibility analysis allows automatic account-
ing for platform constraints while selecting a set of RBBs to
be used for a system design. Recall, that an extra-functional
domain engineer provides these constraints by annotating el-
ements of a MARTE model, which describes an evaluation
platform, with the gemRequiredComponent stereotype (see
Fig. 2). The core of our method is a set of ontologies and
SPARQL queries. They are designed to infer whether RBBs
and an adopted platform for the system are compatible with
respect to formulated platform constraints for an RBB and
platform declarations of the system being configured. We
develop the LiU (LInköping University) MagicDraw8 plugin
to support transformation of MARTE models into ontologies
and to execute compatibility analysis. Sect. 5.1 explains the
developed ontology hierarchy exemplified using the security
domain knowledge, and Sect. 5.2 defines the notion of com-
patibility.

5.1 Ontologies for compatibility analysis
Fig. 4 depicts the developed set of ontologies. These ontolo-
gies are organised in three layers, i.e. expert, vendor, and
engineer, and related to each other through the import, use,
and refer to relations.

Figure 4: Ontologies for compatibility analysis

5.1.1 Expert layer
Ontologies of the Expert layer are maintained by experts of
the embedded and extra-functional domains. It contains
three ontologies. The first two, i.e. NFPType ontology
and Resource ontology, are obtained as transformation of
MARTE packages dedicated for resource modelling. The
third ontology is the refinement of the core evaluation on-
tology for the security domain already explained in Sect. 4.

8MagicDraw is adopted as an integrating environment
within the European SecFutur project [1].

Techniques to transform UML class models into ontologies
are studied and presented, e.g. by Xu et al. [30]. Addition-
ally, Xu et al. prove that the presented UML (class models)
to OWL transformation is semantics-preserving. Transfor-
mation of MARTE packages into OWL can be approached
in a similar manner where a UML class is replaced by a UML
stereotype and an attribute is replaced by a tag. Some ba-
sic rules that we apply in our work may be summarised as
follows:

• Each MARTE stereotype is represented as an OWL
class.

• Each tag is represented as an OWL object or data
property, where the domain is the stereotype that owns
the tag and the range is the defined type of the tag.

• Generalisation relations of the MARTE profile are rep-
resented as sub-class relations in the ontology.

• Composition relations are represented as the part-whole
object properties, i.e. the “hasPart” relation.

We avoid using the Ontology UML profile [14] that allows
designing ontologies as UML models since this requires in-
depth understanding of the underlying ontologies from an
engineer. Our goal is to exploit advantages of ontology tech-
nologies (e.g. querying services), but to allow an engineer
to operate only with terms of a considered extra-functional
domain.

The NFPType ontology of the expert layer contains a set
of types and their relations needed to characterise a hard-
ware/software component, e.g. data rate (Mbps, Kbps, etc.)
and frequency (Hz, KHz, etc.). This ontology is derived
from the MeasurementUnits, MARTE DataTypes, and Ba-
sic NFP Types sub-packages of MARTE that enable spec-
ification of non-functional properties (see Chapter D.2 in
MARTE [15]). The Resource ontology contains concepts
needed to describe platform components. It is derived from
the MARTE HRM package described in Chapter 14.2 [15].
Both ontologies can be accessed on our web page 9.

5.1.2 Vendor layer
This layer in Fig. 4 consists of vendor component ontologies,
where a vendor is a provider of platform components avail-
able for construction of execution platforms for embedded
systems (e.g. Texas Instruments). Each ontology encap-
sulates description of platform components that belong to
some vendor. The Resource ontology of the expert layer
serves as a language to describe these components.

In order to provide the description of available components,
a vendor needs to perform the following steps. First, a ven-
dor uses the MagicDraw tool 10 to create models of platform
components. These models are UML class models annotated
with stereotypes from the HRM package. Second, a vendor
launches the LiU MagicDraw plugin to transform the created

9www.ida.liu.se/~marva/ontologies/
10www.magicdraw.com

MARTE models into an ontology. We use the Java OWL
APIs 11 and Acceleo 12 tools to realise this transformation.

Fig. 5 depicts an example of the OMPA3530 board provided
by the vendor Texas Instruments. This board includes com-
puting (TMS320C64x+ and ARM Cortex-A8) and storage
(NAND Flash and LPDDR) elements, communication inter-
faces (I2C, SDIO, and 10/100Mbps NIC), a daughter card,
and the LCD display. The daughter card is connected to
the ADE7758 sensor via a Serial Peripheral Interface (SPI)
bus. Finally, a 10/100Mbps NIC is used to connect the
OMAP3530 board to a communication channel (LAN). Note
that TMS320C64x+ and ARM Cortex-A8 have also their
own models that we omit for the sake of brevity.

Figure 5: A model of the OMAP3530 component
created at the vendor layer

5.1.3 Engineer level
The bottom layer in Fig. 4 is the Engineer layer. At this
level, system and security engineers use the ontologies cre-
ated at the expert and vendor layers to model the adopted
platform and components used for evaluation of RBBs. In
particular, an engineer uses existing components provided
by vendors and stored in vendor ontologies, whereas the re-
source ontology is used if such a component is not known or
not present in vendor ontologies. Thereafter, a security en-
gineer creates a security evaluation record (i.e. an instance
of the security evaluation ontology) where the gemPlatform
concept refers to the RBB platform specification (see Fig. 4).

In the case study outlined in Sect. 2, TSM devices are built
on the OMAP3530 board from Fig. 5. Since this component
will have been described and stored in the vendor ontology
a system engineer only needs to load the corresponding on-
tology and use this component as a part of the TSM model.
The LiU MagicDraw plugin supports this functionality.

As mentioned in Sect. 2, the data transmitted between a
TSM and TSMC must be protected against confidentiality
threats. We consider two candidate RBBs, namely the AES

11www.owlapi.sourceforge.net
12www.eclipse.org/acceleo/

(Advanced Encryption Standard) 13 and DES (Data Encryp-
tion Standard) [18] implementations by Texas Instruments,
which can provide this EFP. AES RBB requires the use of
the C64x+ processor while the DES RBB requires the use of
the TMS320C6211 chip. In the next section, we explain how
the suggested architecture of ontologies enables selection of
RBBs based on platform compatibility analysis.

5.2 Compatibility analysis
We identify two types of platform compatibility: logical and
environmental. The notion of logical compatibility is based
on the pairwise logical compatibility of an RBB and system
platform components as it is defined below.

Def.: Two components A and B are logically compatible if
one of the following holds: (a) A is identical with B ; (b) A
has B as a part; (c) A is a part of B ; (d) A can be connected
to B ; (e) B can be connected to A; (f) a disjunction of (b)-
(e).

We employ the ontology querying services to automate a
check of the above definition. We use the ASK operator
of SPARQL [19] that returns a boolean value indicating
whether a path that matches a query pattern exists. For
example, the query for case (b) where the relation “has-
Part” is examined has the following form PREFIX hrm :

[the ontology IRI] ASK WHERE{?A hrm : hasPart ?B}.
Queries for cases (c) - (e) have a similar structure replacing
“hasPart” with the “isPartOf”, “hasConnected”, and “isCon-
nectedTo” object properties respectively. To support the
check of case (f), we use a special construct defined by the
SPARQL 1.1 syntax, i.e. the so called path properties [21].
It allows examining a path of an arbitrary length. Hence,
the query for case (f) replaces the “hasPart” property with a
path expression, namely, (hrm : hasPart | hrm : isPartOf |
hrm : connectedTo | hrm : hasConnected)∗ . In this expres-
sion, the symbol “|” denotes the “OR” operator, while the
symbol“∗”means that any number of occurrences is allowed.

In the query above, the ?A and ?B symbols denote variables.
They are replaced by components of a system platform and
components of an RBB platform (annotated with the “gem-
RequiredComponent” stereotype) respectively. In our case
study (see Section 5.1), these are OMAP3530 and C64x+
for the AES RBB, and OMAP3530 and TMS320C6211 for
the DES RBB. Since TMS320C64x+ has a C64x+ proces-
sor as its part, the query returns true. In contrast, no path
is found between TMS320C6211 and TMS320C64x+ for the
DES RBB. Thus, we conclude that the particular implemen-
tation of the DES algorithm is not logically compatible with
the current design of a system platform that is based on the
OMAP3530 board, while AES can be selected as a RBB to
provide secure communication for the TSM device.

The definition of environmental compatibility is built upon
the Env Condition type from the HRM package (see Figure
14.72 in MARTE [15]) which defines five condition types:
temperature, humidity, vibration, shock, and altitude. En-
vironmental (env.) condition of each type has a value range.
An engineer needs to annotate the components with the
“HwComponent” stereotype and define the “r Conditions”

13www.ti.com/tool/c64xpluscrypto

tag to assign env. conditions to a component. We use the
following terms and functions to define environmental com-
patibility :

• K and U are sets of the env. condition types and mea-
surement units respectively, where K = {temperature,

humidity, vibration, shock, altitude} and U = {◦C, %, m/s2,

g, m}.

• A set ENV COND defined as I × U ×K that describes
each env. condition as a tuple of a value interval (a set
I), a unit (from the set U), and a type (from the set
K).

• A function defining env. conditions of a component,
i.e. env cond : COMP → 2ENV COND, where COMP is
the set of components.

• Projection functions extracting from an env. condi-
tion the corresponding type: kind : ENV COND → K,
unit: unit : ENV COND → U, and value interval range :

ENV COND → I.

Given these terms and functions we introduce two other
functions to define the notion of environmental compatibil-
ity.

Def.: Environmental compatibility is a function env comp :

COMP × COMP → {true, false}. A component A is environ-
mentally compatible with a component B if env comp(A,B) is
evaluated to true as defined below:

env comp(A,B) , true if
{〈
〈i1, u, k〉, 〈i2, u, k〉

〉
| a ∈ env cond(A),

b ∈ env cond(B), k ∈ kind(a) ∩ kind(b), i1 = range(a), i2 =

range(b), i1∩i2 6= ∅
}
6= ∅ or

{
k | a ∈ env cond(A), b ∈ env cond(B),

k ∈ kind(a) ∩ kind(b)
}

= ∅

The intuition is that env. conditions of a platform compo-
nent A adopted for an embedded system and a component
B required by an RBB are compatible if corresponding in-
terval values of env. conditions of the same type are over-
lapping. These components are also compatible if there are
no common types of conditions that are defined for both
components.

In addition, we define another function that specifies the
environmental conditions under which a pair of components
can not operate (although each could operate individually
under respective conditions). We refer to such env. con-
ditions as env. constraints. This function is defined as
env constr : COMP ×COMP → 2ENV COND×ENV COND as fol-
lows:

env constr(A,B) ,
{〈
〈i1, u, k〉, 〈i2, u, k〉

〉
| a ∈ env cond(A), b ∈

env cond(B), k ∈ kind(a) ∩ kind(b), i1 = range(a) \ range(b),

i2 = range(b) \ range(a), u = unit(a)
}

The intuition is that while each component might operate
in an interval that is a subset of its operational condition,
the composition with another component that disallows that
subset dictates that the first component is prohibited from

operating in that condition. The presence of these con-
straints for components guides a system engineer to imple-
ment a mechanism (e.g. cooling system) that ensures that
the corresponding components sustain the allowed env. con-
ditions (e.g. to keep within a given temperature range). The
LiU MagicDraw plugin generates these env. constraints au-
tomatically from given environment conditions attached to
individual components.

In our case study, the temperature conditions for the compo-
nents OMAP3530 and TMS320C64x+ (the AES RBB) have
the same ranges of [0; 90]◦C. Therefore, the system and RBB
are environmentally compatible without any additional con-
straints.

The above definitions for computing the compatibility rela-
tion and their pairwise imposed constraints allow us to rea-
son about env. conditions of assemblies based on constraints
for its constituent components.

6. SCALABILITY AND PERFORMANCE
So far, we have used the smart metering network to illustrate
the compatibility analysis and knowledge management ideas
supported by our methods and tool. This section proceeds
to show that our approach is scalable to domains with large
data sets. We design experiments to estimate the size of
resulting vendor ontologies as well as the execution time for
the transformation of MARTE models into an ontology.

We focus on microcontrollers (MCUs) provided by some of
the most common vendors (Renesas, Texas Instruments, Fu-
jitsu, Atmel, and Microchip Technology). We estimate po-
tential complexity of corresponding MARTE models and the
size of corresponding ontologies as an amount of generated
axioms. Three classes of embedded systems and MCUs com-
monly used for their design [10] are considered: small scale
(8-bit MCUs), medium scale (16-bit MCUs), and sophisti-
cated systems (32-bit and ARM-based MCUs). Then, we
study how many models are currently available on the mar-
ket for each vendor (see Table 2). The data has been ex-
tracted from the official Internet resources of the vendors.

Table 2: Scalability and performance estimations

8-bit 16-bit 32-bit
1 Renesas 933 2290 1817
2 Texas Instruments 0 406 292
3 Fujitsu 103 207 630
4 Microchip Technology 348 334 79
5 Atmel 238 0 179
6 Total amount of units 1622 3237 2997
7 Av. number of axioms

per unit
68 105 133

8 Total number of ax-
ioms

110 296 339 885 398 601

9 Av. transformation
time (ms)

1455.1 1627.92 2497.92

To estimate the potential number of generated axioms, we
select five commonly used MCUs of each class, create their
MARTE models, and execute their transformations. This
study shows that the simplest 8-bit MCUs consists on aver-

age of 68 axioms, while the most sophisticated 32-bit MCUs
generate 133 axioms (see Table 2, row 7). Row 8 shows the
number of produced axioms when all models are added into
ontologies. Finally, we compare these numbers with scala-
bility studies of the OWL APIs and Jena technologies [5,7].
In particular, Horridge and Bechhofer [7] show that OWL
APIs can easily handle ontologies that contain 1 651 533 ax-
ioms consuming 831 MB. As a result, we conclude that the
used technologies (OWL APIs and MARTE) allow handling
ontologies for a significant number of vendors in a poten-
tial real world deployment. This capacity allows loading
multiple vendors’ ontologies to execute compatibility analy-
sis. Additionally, some techniques for swapping ontologies in
memory can be implemented to handle even bigger datasets.

Next, we execute 50 runs of the transformation and measure
the execution time for each run (see Table 2, row 9). The
hardware used is a system with 2.8 GHz Intel Core i7 and 8
GB of RAM running Mac OS. In our case, the transforma-
tion time does not vary substantially for small and medium
MCUs, while a one second increase is observed for the so-
phisticated 32-bit MCUs. This increase can be explained by
naturally larger, in comparison with 8-bit and 16-bit MCUs,
complexity of 32-bit MCUs in both number of elements and
their attributes.

7. RELATED WORK
We briefly review the earlier work on analysis support for
RBB integration and use of ontologies for a system design.

The use of performance analysis at the early design phase
is a subject of active research. Woodside et al. [29] apply
an approach for performance analysis of RBBs represented
as aspects. Bondarev et al. [2] present a toolkit for perfor-
mance evaluation where RBBs conform to a specific compo-
nent model. These methods use models as a means to input
required data into performance tools. Our work comple-
ments these approaches since it enables reuse of outcomes
of the RBBs performance evaluation conducted by EFPs do-
main experts.

Ciccozzi et al. [4] propose a meta-model which is used to
propagate results of monitoring extra-functional properties
at the code level back to a system model in order to improve
it. This approach is developed for the CHESS modelling
language 14. In our work, we exploit MARTE models to
capture platform-specific constraints of embedded systems
and RBBs. The proposed MARTE compatible profile allows
capturing more information about outcomes of RBBs per-
formance analysis, e.g. the used workload and the observed
resource footprint. This information, structured, captured,
and searchable, aids an embedded system engineer to se-
lect an appropriate RBB to satisfy required extra-functional
properties.

The use of ontologies to support tasks of model-driven en-
gineering is a promising research topic [6]. The potential of
ontology technologies applied to system engineering to for-
malise general modelling is outlined by Tetlow et al. [24].

14ARTEMIS-JU-216682, CHESS, www.chess-project.com/

Walter et al. [28] employ ontologies to improve the practice
of domain-specific modelling. The authors develop a frame-
work to validate models conformed to a certain domain-
specific language employing ontology reasoning services (e.g.
an inconsistency checker). Vasilevskaya et al. [26] use the on-
tology and domain-specific modelling paradigms to create a
process for integration of security reusable building blocks
into embedded systems. However, the resource concerns are
not treated in that process. In comparison, we provide onto-
logical support for the standard MARTE profile as a means
of managing performance analysis and compatibility analy-
sis for RBB selection.

Another interesting topic is the use of ontologies to facili-
tate design of complex systems. Dibowski et al. [5] present
an ontology framework to describe devices for the build-
ing automation domain. Tang et al. [22] use ontology to
configure embedded control systems based on a functional
model of a system that is intended to express user demand.
Wagelaar [27] combines the ontology technology with the
model-driven architecture principles to enable reuse of trans-
formations from platform-independent models to Platform-
Specific Models (PSMs). Tekinerdoğan et al. [23] employ
ontologies to support selection of PSMs, where a system
platform is described as a set of high level properties. We
use ontologies to support composition of embedded systems
from RBBs that provide extra-functional properties. Fur-
thermore, we use MARTE models and extend them with ad-
ditional concepts to formulate platform-specific constraints
as a basis for such composition. Specifically, we elaborate on
the notion of model-based compatibility as one of possible
criteria for selection of RBBs.

We implement the compatibility analysis as queries to the
vendor ontologies searching for potentially hidden relations.
This allows accounting and reusing the expert knowledge
captured by vendors as opposed to querying unrelated mod-
els using a tool such as EMF Query 15.

8. CONCLUSIONS
In our work, we recognise the need to reuse the performance
evaluation results of RBBs for their integration into embed-
ded system designs when considering EFPs already at the
early development phases. Thus, we present an infrastruc-
ture that unifies UML profiling, ontologies, and transforma-
tion techniques to support the domain engineer in describ-
ing these results and an embedded system engineer in using
this knowledge. Additionally, we elaborate the model-based
compatibility analysis as a basis to reuse the performance
analysis results across domains. We developed the LiU Mag-
icDraw plugin to support the above tasks. The case study
of smart metering devices is used to illustrate our proposal.

In further work, we will enhance our compatibility technique
considering other MARTE packages (e.g. those to model the
software components). Additionally, we will explore other
criteria and strategies to reuse the RBBs performance anal-
ysis results, validating them on smart metering devices and
other case studies given by industrial partners of the SecFu-
tur project [1].

15https://projects.eclipse.org/projects/modeling.
emf.query

9. REFERENCES
[1] SecFutur: Design of Secure and Energy-efficient

Embedded Systems for Future Internet Application.
http://www.secfutur.eu, visited May 2012.

[2] E. Bondarev, M. Chaudron, and P. H. N. de With.
CARAT: a Toolkit for Design and Performance
Analysis of Component-Based Embedded Systems. In
The Conference on Design, Automation and Test in
Europe, EDA Consortium, 2007.

[3] B. Chandrasekaran, J. R. Josephson, and V. R.
Benjamins. What are ontologies and why do we need
them? IEEE Intelligent Systems, 1999.

[4] F. Ciccozzi, A. Cicchetti, and M. Sjödin. Round-trip
support for extra-functional property management in
model-driven engineering of embedded systems.
Information and Software Technology, Elsevier, 2012.

[5] H. Dibowski and K. Kabitzsch. Ontology-Based
Device Descriptions and Device Repository for
Building Automation Devices. EURASIP Journal on
Embedded Systems, 2011.

[6] D. Gasevic, D. Djuric, and V. Devedzic. Model Driven
Engineering and Ontology Development. Springer
Publishing Company, 2009.

[7] M. Horridge and S. Bechhofer. The OWL API: A Java
API for OWL ontologies. Semant. web, IOS Press,
2011.

[8] M. Z. Iqbal, S. Ali, T. Yue, and L. Briand.
Experiences of Applying UML/MARTE on Three
Industrial Projects. In Model Driven Engineering
Languages and Systems, Springer, 2012.

[9] J. Jürjens. Secure System Development with UML.
Springer-Verlag, 2005.

[10] R. Kamal. Embedded Systems: Architecture,
Programming and Design. Tata McGraw-Hill, 2009.

[11] S. Kelly and J.-P. Tolvannen. Domain-Specific
Modeling: Enabling Full Code Generation. John Wiley
& Sons, 2008.

[12] T. Lodderstedt, D. Basin, and J. Doser. SecureUML:
A UML-Based Modeling Language for Model-Driven
Security. In International Conference on The Unified
Modeling Language, Springer-Verlag, 2002.

[13] B. Motik, P. F. Patel-Schneider, and B. Parsia. OWL
2 Web Ontology Language Structural Specification
and Functional-Style Syntax.
http://www.w3.org/TR/owl2-syntax/, 2012.

[14] Object Management Group. Ontology Definition
Metamodel, version 1.0, May 2009. Document
number: formal/2009-05-01.

[15] Object Management Group. UML Profile for
MARTE: Modeling and Analysis of Real-Time
Embedded Systems, version 1.1, 2011.

[16] G. Pedroza, L. Apvrille, and D. Knorreck. AVATAR:
A SysML Environment for the Formal Verification of
Safety and Security Properties. In IEEE International
Conference on New Technologies of Distributed
Systems, 2011.

[17] D. C. Petriu. Software model-based performance
analysis. book chapter in Model Driven Engineering for
distributed Real-Time Systems: MARTE modelling,
model transformations and their usages, 2010.

[18] R. S. Preissig. Data Encryption Standard (DES)

Implementation on the TMS320C6000. Application
Report, 2000.

[19] E. Prud’hommeaux and A. Seaborne. SPARQL query
language for RDF.
http://www.w3.org/TR/rdf-sparql-query/, 2008.

[20] S. Ravi, A. Raghunathan, P. Kocher, and
S. Hattangady. Security in Embedded Systems:
Design Challenges. ACM Transactions on Embedded
Computing Systems, 2004.

[21] A. Seaborne. SPARQL 1.1 Property Paths.
http://www.w3.org/TR/sparql11-property-paths/,
2010.

[22] B. Tang, J. Yi, Y. Cheng, and C. Gu. A
Reconfigurable Design Method of Embedded Control
System based on Ontology. In IEEE International
Conference on E-Product E-Service and
E-Entertainment, 2010.

[23] B. Tekinerdoğan, S. Bilir, and C. Abatlevi. Integrating
platform selection rules in the model driven
architecture approach. In Conference on Model Driven
Architecture: Foundations and Applications, Springer,
2003.

[24] P. Tetlow, J. Z. Pan, D. Oberle, E. Wallace,
M. Uschold, and E. Kendall. Ontology Driven
Architectures and Potential Uses of the Semantic Web
in Systems and Software Engineering. http:
//www.w3.org/2001/sw/BestPractices/SE/ODA/,
2006.

[25] M. Vasilevskaya, L. A. Gunawan, S. Nadjm-Tehrani,
and P. Herrmann. Security Asset Elicitation for
Collaborative Models. In Model-Driven Security
Workshop at MoDELS, ACM, 2012.

[26] M. Vasilevskaya, L. A. Gunawan, S. Nadjm-Tehrani,
and P. Herrmann. Integrating security mechanisms
into embedded systems by domain-specific modelling.
Security and Communication Networks, John Wiley &
Sons, 2013.

[27] D. Wagelaar. Platform Ontologies for the
Model-Driven Architecture. PhD thesis, 2010.

[28] T. Walter, F. S. Parreiras, and S. Staab. An
ontology-based framework for domain-specific
modeling. In Software & Systems Modeling,
Springer-Verlag, 2012.

[29] M. Woodside, D. C. Petriu, D. B. Petriu, J. Xu,
T. Israr, G. Georg, R. France, J. M. Bieman, S. H.
Houmb, and J. Jürjens. Performance Analysis of
Security Aspects by Weaving Scenarios Extracted
from UML models. Journal of Systems and Software,
Elsevier Science Inc., 2009.

[30] Z. Xu, Y. Ni, W. He, L. Lin, and Q. Yan. Automatic
extraction of OWL ontologies from UML class
diagrams. World Wide Web, Springer US, 2012.

